Abstract and Applied Analysis (Jan 2011)
Logarithmically Complete Monotonicity Properties Relating to the Gamma Function
Abstract
We prove that the function fα,β(x)=Γβ(x+α)/xαΓ(βx) is strictly logarithmically completely monotonic on (0,∞) if (α,β)∈{( α,β):1/α≤β≤1, α≠1}∪{(α,β):0<β≤1,φ1(α,β)≥0,φ2(α,β)≥0} and [fα,β(x)]-1 is strictly logarithmically completely monotonic on (0,∞) if (α,β)∈{(α,β):0<α≤1/2,0<β≤1}∪{(α,β):1≤β≤1/α≤2,α≠1}∪{(α,β):1/2≤α<1,β≥1/(1-α)}, where φ1(α,β)=(α2+α-1)β2+(2α2-3α+1)β-α and φ2(α,β)=(α-1)β2+(2α2-5α+2)β-1.