Materials (Dec 2023)

Laser-Directed Energy Deposition of Fe-Mn-Si-Based Shape Memory Alloy: Microstructure, Mechanical Properties, and Shape Memory Properties

  • Bing Liu,
  • Cong Yao,
  • Jingtao Kang,
  • Ruidi Li,
  • Pengda Niu

DOI
https://doi.org/10.3390/ma17010131
Journal volume & issue
Vol. 17, no. 1
p. 131

Abstract

Read online

Fe-Mn-Si shape memory alloys (SMAs) have gained significant attention due to their unique characteristics. However, there remains a gap in the literature regarding the fabrication of these alloys using laser-directed energy deposition (LDED). This study fills this void, investigating the properties of Fe-Mn-Si SMAs produced by LDED. The shape memory performance of as-deposited Fe-Mn-Si SMAs was studied using a tensile method. Alloys underwent different degrees of deformation to assess their shape memory effect. Microstructural evaluations were conducted post-deformation to observe the internal structures of the alloys. The tensile tests revealed that shape recovery rates for deformation levels of 3%, 7%, 11%, and 15% were 68.1%, 44.2%, 31.7%, and 17.6%, respectively. Notably, the maximum recoverable deformation of the LDED-formed Fe-Mn-Si-based shape memory alloy reached 3.49%, surpassing the traditional deformation processing SMAs (<3%). The presence of a significant number of stacking faults was linked to the enhanced shape memory performance. The LDED technique demonstrates promising potential for the fabrication of Fe-Mn-Si SMAs, producing alloys with enhanced shape memory performance compared to traditionally processed SMAs. The study’s findings offer new insights and broaden the applicability of LDED in the field of SMAs.

Keywords