Ecotoxicology and Environmental Safety (Sep 2021)
Autophagy was activated against the damages of placentas caused by nano-copper oral exposure
Abstract
Nano-copper (nano-Cu) is widely used in the pharmaceutical field as well as a feed additive for animals owing to its unique physicochemical characteristics and bioactivities. In our previous study, nano-Cu was found to hamper fetal development; however, the toxicity of nano-Cu and its effects in placental function have not been elucidated. Therefore, we investigated the toxic effects of nano-Cu using rat placenta. Pregnant Sprague-Dawley rats were orally exposed to different copper sources from the third day of gestation (GD 3) to GD 18. We found that nano-Cu (180 mg/kg) and CuCl2.2 H2O increased the accumulation of copper. Besides, nano-Cu and CuCl2.2 H2O disrupted the placental morphology and induced oxidative stress. Micro-copper (micro-Cu) caused similar toxicity in the placenta, but its effects were weaker than that of nano-Cu and CuCl2.2 H2O. In addition, exposure to nano-Cu (180 mg/kg) and CuCl2.2 H2O induced inflammation in the rat placenta. Furthermore, nano-Cu, micro-Cu, and CuCl2.2 H2O upregulated the expression of the autophagy-related proteins, Beclin-1 and LC3 II/ LC3 I, and downregulated that of p62. Moreover, nano-Cu, micro-Cu, and CuCl2.2 H2O downregulated the protein expression of PI3K, p-AKT/AKT, and p-mTOR/mTOR in rat placentas, whereas the protein expression of p-AMPK/AMPK was upregulated. Taken together, our data indicated that prenatal exposure to nano-Cu induced autophagy via the PI3K/AKT/mTOR and AMPK/mTOR pathways, which associated with oxidative stress and inflammation in rat placenta.