BMC Immunology (Oct 2010)

Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages

  • Kunkel Steven L,
  • Finn William G,
  • Hartigan Adam J,
  • Oak Sameer R,
  • Joshi Amrita D,
  • Duffy Karen E,
  • Das Anuk,
  • Hogaboam Cory M

DOI
https://doi.org/10.1186/1471-2172-11-52
Journal volume & issue
Vol. 11, no. 1
p. 52

Abstract

Read online

Abstract Background Interleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined. Results Human macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone. Conclusions Together, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.