Regenerative Therapy (Jun 2020)
A pair of cell preservation solutions for therapy with human adipose tissue-derived mesenchymal stromal cells
Abstract
Introduction: Stem cells for therapy are often suspended in a preservation solution, such as normal saline or lactated Ringer's solution, for a short time before intravenous infusion. However, these solutions are not necessarily ideal for maintaining cell viability and preventing the sedimentation of cells during storage and infusion. In this study, we attempted to optimize the compositions of preservation solutions, which could affect the efficacy and safety of stem cell therapy. Methods: We determined the characteristics of a preservation solution that would optimize cell viability and the percentage of cells in the supernatant using human adipose-derived mesenchymal stromal cells (hADSCs). We compared solutions that differed by electrolytes (e.g., normal saline and Ringer's solution) and the concentrations of dextran 40 and trehalose. The effects of the solutions on hADSCs were evaluated by assessing cell surface markers, colony-forming capacity, differentiation potential, and cell concentrations in the infusion line. Results: Optimized preservation solutions consisted of lactated Ringer's solution with 3% trehalose without or with 5% dextran 40 (LR-3T and LR-3T-5D, respectively). The cell viabilities after 24 h of storage at 5 °C in LR-3T and LR-3T-5D were 94.9% ± 2.4% and 97.6% ± 2.4%, respectively. The percentage of cells in the supernatant after 1 h of storage at room temperature in LR-3T-5D was 83.5% ± 7.6%. These solutions preserved the percentage of cell surface marker-positive cells, the colony-forming capacity, and the adipogenic and osteogenic differentiation ability in hADSCs for at least 24 h after preservation at 5 °C and 25 °C. Discussion: We determined the optimal composition of preservation solutions for hADSCs and confirmed the effects of these solutions on cell viability and the stability of cell characteristics in vitro. Our results suggest that LR-3T and LR-3T-5D can help maintain the quality of stem cells for therapy during preservation and infusion. However, further in vivo research is needed on the efficacy and safety of the solutions in different therapeutic cell lines before clinical use.