BMC Medical Genomics (Mar 2010)
Molecular sampling of prostate cancer: a dilemma for predicting disease progression
Abstract
Abstract Background Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. Methods We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. Results Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors. Conclusions The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.