Membranes (Aug 2022)

Analysis and Experimental Study on Water Vapor Partial Pressure in the Membrane Distillation Process

  • Zanshe Wang,
  • Zhaoying Jia,
  • Ran Li,
  • Qi Gao,
  • Zhaolin Gu

DOI
https://doi.org/10.3390/membranes12080802
Journal volume & issue
Vol. 12, no. 8
p. 802

Abstract

Read online

In membrane distillation, the vapor pressure difference is the driving force of mass transfer. The vapor pressure is generally assumed by the saturation pressure and calculated by the Antoine equation. However, in the actual operation process, the feed solutions usually flow in a non-equilibrium state, which does not meet the theoretical and measurement conditions of the vapor-liquid equilibrium (VLE) state. This study tested the actual water vapor pressure of the pure water, lithium bromide (LiBr) solution, lithium chloride (LiCl) solution, and calcium chloride (CaCl2) solution under different flow conditions. The results showed that the actual water vapor pressure was lower than the saturation pressure overall, and the difference increased with temperature but decreased with the mass concentration. Therefore, in vacuum membrane distillation (VMD), air gap membrane distillation (AGMD), and sweeping gas membrane distillation (SGMD), the membrane flux calculated by water vapor saturation pressure was higher than the actual membrane flux, and the relative difference decreased and was less than 10% after 60 °C. In direct contact membrane distillation (DCMD), the water vapor pressure difference on both membrane sides was almost the same by using the saturation vapor pressure or the tested data since the pressure errors were partially offset in parallel flow or counter-flow modes.

Keywords