Inhibitory Effect of CCK-8 on Methamphetamine-Induced Apoptosis
ZHANG Wu-hua,
ZHANG Ming-long,
JING Wei-wei,
XIE Bing,
BI Hai-tao,
YU Feng,
CONG Bin,
MA Chun-ling,
WEN Di
Affiliations
ZHANG Wu-hua
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
ZHANG Ming-long
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
JING Wei-wei
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
XIE Bing
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
BI Hai-tao
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
YU Feng
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
CONG Bin
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
MA Chun-ling
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
WEN Di
Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
ObjectiveTo investigate the inhibitory effect of cholecystokinin octapeptide (CCK-8) binding to cholecystokinin 2 receptor (CCK2R) on methamphetamine (METH)-induced neuronal apoptosis, and to explore the signal transduction mechanism of β-arrestin 2 in CCK-8 inhibiting METH-induced neuronal apoptosis.MethodsSH-SY5Y cell line was cultured, and HEK293-CCK1R and HEK293-CCK2R cell line were constructed by lentivirus transfection. Small interfering RNA (siRNA) was used to knockdown the expression of β-arrestin 2. Annexin Ⅴ-FITC/PI staining and flow cytometry were used to detect the apoptotic rate of cells, and Western blotting was used to detect the expression of apoptosis-related proteins.ResultsThe apoptosis of SH-SY5Y cells was induced by 1 mmol/L and 2 mmol/L METH treatment, the number of nuclear fragmentation and pyknotic cells was significantly increased, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were increased. CCK-8 pre-treatment at the dose of 0.1 mmol/L and 1 mmol/L significantly reversed METH-induced apoptosis in SH-SY5Y cells, and inhibited cell nuclear fragmentation, pyknosis and the changes of apoptosis-related proteins induced by METH. In lentivirus transfected HEK293-CCK1R and HEK293-CCK2R cells, the results revealed that CCK-8 had no significant effect on METH-induced changes of apoptosis-related proteins in HEK293-CCK1R cells, but it could inhibit the expression level of apoptosis-related proteins in HEK293-CCK2R cells induced by METH. The inhibitory effect of CCK-8 on METH-induced apoptosis was blocked by the knockdown of β-arrestin 2 expression in SH-SY5Y cells.ConclusionCCK-8 can bind to CCK2R and exert an inhibitory effect on METH-induced apoptosis by activating the β-arrestin 2 signal.