Poultry Science (Feb 2024)

Effects of different selenium sources and levels on the physiological state, selenoprotein expression, and production and preservation of selenium-enriched eggs in laying hens

  • Yan Li,
  • Tianming Mu,
  • Ru Li,
  • Sasa Miao,
  • Huafeng Jian,
  • Xinyang Dong,
  • Xiaoting Zou

Journal volume & issue
Vol. 103, no. 2
p. 103347

Abstract

Read online

ABSTRACT: Selenium (i.e., Se) is a trace element that is vital in poultry nutrition, and optimal forms and levels of Se are critical for poultry productivity and health. This study aimed to compare the effects of sodium selenite (SS), yeast selenium (SY), and methionine selenium (SM) at selenium levels of 0.15 mg/kg and 0.30 mg/kg on production performance, egg quality, egg selenium content, antioxidant capacity, immunity and selenoprotein expression in laying hens. The trial was conducted in a 3 × 2 factorial arrangement, and a total of 576 forty-three-wk-old Hyland Brown laying hens were randomly assigned into 6 treatment groups, with diets supplemented with 0.15 mg Se/kg and 0.3 mg Se/kg of SS, SY and SM for 8 wk, respectively. Results revealed that SM increased the laying rate compared to SS and SY (P < 0.05), whereas different selenium levels had no effect. Organic selenium improved egg quality, preservation performance, and selenium deposition compared to SS (P < 0.05), while SY and SM had different preferences for Se deposition in the yolk and albumen. Also, organic selenium enhanced the antioxidant capacity and immune functions of laying hens at 0.15 mg Se/kg, whereas no obvious improvement was observed at 0.30 mg Se/kg. Moreover, SY and SM increased the mRNA expression of most selenoproteins compared to SS (P < 0.05), with SM exhibiting a more pronounced effect. Correlation analysis revealed a strong positive association between glutathione peroxidase 2 (GPx2), thioredoxin reductases (TrxRs), selenoprotein K (SelK), selenoprotein S (SelS), and antioxidant and immune properties. In conclusion, the use of low-dose organic selenium is recommended as a more effective alternative to inorganic selenium, and a dosage of 0.15 mg Se/kg from SM is recommended based on the trail conditions.

Keywords