Sensors (Oct 2024)

Deep Neural Network-Based Cigarette Filter Defect Detection System with FPGA Acceleration for Online Recognition

  • Liang Huang,
  • Qiongxia Shen,
  • Chao Jiang,
  • You Yang

DOI
https://doi.org/10.3390/s24206752
Journal volume & issue
Vol. 24, no. 20
p. 6752

Abstract

Read online

In the cigarette manufacturing industry, machine vision and artificial intelligence algorithms have been employed to improve production efficiency by detecting product defects. However, achieving both high accuracy and real-time defect detection for cigarettes with complex patterns remains a challenge. To address these issues, this study proposes a model based on RESNET18, combined with a feature enhancement algorithm, to improve detection accuracy. Additionally, a method is designed to deploy the model on a field-programmable gate array (FPGA) with high parallel processing capabilities to achieve high-speed detection. Experimental results demonstrate that the proposed detection model achieves a detection accuracy of 95.88% on a cigarette filter defect dataset with an end-to-end detection speed of only 9.38 ms.

Keywords