Remote Sensing (Mar 2023)

Accurate and Serialized Dense Point Cloud Reconstruction for Aerial Video Sequences

  • Shibiao Xu,
  • Bingbing Pan,
  • Jiguang Zhang,
  • Xiaopeng Zhang

DOI
https://doi.org/10.3390/rs15061625
Journal volume & issue
Vol. 15, no. 6
p. 1625

Abstract

Read online

Traditional multi-view stereo (MVS) is not applicable for the point cloud reconstruction of serialized video frames. Among them, the exhausted feature extraction and matching for all the prepared frames are time-consuming, and the scope of the search requires covering all the key frames. In this paper, we propose a novel serialized reconstruction method to solve the above issues. Specifically, a joint feature descriptors-based covisibility cluster generation strategy is designed to accelerate the feature matching and improve the performance of the pose estimation. Then, a serialized structure-from-motion (SfM) and dense point cloud reconstruction framework is designed to achieve high efficiency and competitive precision reconstruction for serialized frames. To fully demonstrate the superiority of our method, we collect a public aerial sequences dataset with referable ground truth for the dense point cloud reconstruction evaluation. Through a time complexity analysis and the experimental validation in this dataset, the comprehensive performance of our algorithm is better than the other compared outstanding methods.

Keywords