Journal of Lipid Research (Sep 1987)
Separation and isolation of human apolipoproteins C-II, C-III0, C-III1, and C-III2 by chromatofocusing on the Fast Protein Liquid Chromatography system
Abstract
Chromatofocusing, which separates proteins based on differences in isoelectric point, has been used on the Fast Protein Liquid Chromatography (FPLC) system (Pharmacia) to separate the C apolipoproteins from human very low density lipoproteins (VLDL). Using a Mono P column (Pharmacia), a pH gradient between pH 6.2 and pH 4.0 was generated using buffers containing 6 M urea, at a flow rate of 0.5 ml/min. Typically, runs took approximately 45 min. Chromatofocusing of delipidated whole VLDL produced sharp, well-resolved peaks for the C apolipoproteins. However, as determined by analytical isoelectric focusing (IEF), the apolipoprotein E isoforms were not separated from apoC-II, and they contaminated the other apoC species to a variable extent. In addition, apoC-II was not resolved from apoC-III0. Preliminary precipitation of VLDL with acetone prior to delipidation removed both apolipoproteins E and B. Using a start buffer of 25 mM histidine, pH 6.2, and a 1:30 dilution of the polybuffer exchanger (eluting buffer), apoC-II, C-III0, C-III1, and C-III2 were well resolved in run-times of approximately 60 min. The C apoproteins proved to be pure by analytical IEF and immunoassay with monospecific antisera against apoC-II and C-III. Recovery was over 90% of the protein chromatographed. In addition, a variant of apoC-II present in VLDL of a hypertriglyceridemic subject was clearly resolved from the other C apolipoproteins. This technique is superior to conventional methodology in terms of its time saving and high resolution. The application of this technique to the study of C apolipoprotein variants and C apolipoprotein specific radioactivity determinations is possible.