Synthesis of nickel-boron/reduced graphene oxide for efficient and stable lithium-ion storage
Gahyeon Im,
Dami Yun,
Hyun Bin Kim,
Youn-Mook Lim,
Seung-Hwan Oh,
Huisu Kim,
Byungnam Kim,
KwangSup Eom,
Jin-Mun Yun
Affiliations
Gahyeon Im
Advanced Battery Development Team 3, Hyundai Motor Company, Hwaseong, 18280, Republic of Korea
Dami Yun
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; School of Material Science & Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
Hyun Bin Kim
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
Youn-Mook Lim
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
Seung-Hwan Oh
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
Huisu Kim
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
Byungnam Kim
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
KwangSup Eom
School of Material Science & Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea; Corresponding author.
Jin-Mun Yun
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Corresponding author.
Electrode material capacities and cycle performances must improve for large-scale applications such as energy storage systems. Numerous investigations have developed cathode materials to improve lithium-ion batteries (LIBs) performance: however, few have examined new anode materials. In this study, we synthesized a Ni-B/reduced graphene oxide (RGO) composites via a simple chemical reaction method to enhance the stability of electrodes in LIBs. A well-dispersed B, as a component of Ni-B composite, shortened the diffusion distance of lithium ion and allowed for the reversible storage and release of lithium ions. The incorporation of RGO significantly enhanced the dispersion of the Ni-B particles, preventing aggregation and enhancing the electrochemical performance. The long-term cyclic capacity of Ni-B/RGO reached approximately 1200 mAh g−1 at 400 mA g−1. Moreover, well-dispersed B from the reduction of B2O3 enhanced reactions with Li ions, gradually increasing the capacity. After several cycles, Ni-B/RGO maintained its structure without volume changes and with a uniform dispersion of elements. Therefore, Ni-B/RGO exhibited high stability over long cycles, leading to high reversibility. The combination of these features renders Ni-B/RGO a promising lithium storage material for LIBs.