Breast Cancer Research (Jun 2021)

The small G-protein RalA promotes progression and metastasis of triple-negative breast cancer

  • Katie A. Thies,
  • Matthew W. Cole,
  • Rachel E. Schafer,
  • Jonathan M. Spehar,
  • Dillon S. Richardson,
  • Sarah A. Steck,
  • Manjusri Das,
  • Arthur W. Lian,
  • Alo Ray,
  • Reena Shakya,
  • Sue E. Knoblaugh,
  • Cynthia D. Timmers,
  • Michael C. Ostrowski,
  • Arnab Chakravarti,
  • Gina M. Sizemore,
  • Steven T. Sizemore

DOI
https://doi.org/10.1186/s13058-021-01438-3
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. Methods The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. Results Knockout or depletion of RALA inhibited orthotopic primary tumor growth, spontaneous metastasis, and experimental metastasis of TNBC cells in vivo. Conversely, knockout of RALB increased TNBC growth and metastasis. In vitro, RALA and RALB had antagonistic effects on TNBC migration, invasion, and viability with RALA generally supporting and RALB opposing these processes. In BC patient populations, elevated RALA but not RALB expression is significantly associated with poor outcome across all BC subtypes and specifically within TNBC patient cohorts. Immunohistochemical staining for RALA in patient cohorts confirmed the prognostic significance of RALA within the general BC population and the TNBC population specifically. BQU57, a small molecule inhibitor of RALA and RALB, decreased TNBC cell line viability, sensitized cells to paclitaxel in vitro and decreased tumor growth and metastasis in TNBC cell line and PDX models in vivo. Conclusions Together, these data demonstrate important but paradoxical roles for RALA and RALB in the pathogenesis of TNBC and advocate further investigation of RALA as a target for the precise treatment of metastatic TNBC.

Keywords