Memories - Materials, Devices, Circuits and Systems (Jul 2023)
Combustion synthesis and characterization of dysprosium nano-composite melilite
Abstract
Light emitting nano-scale materials have attracted a great interest in recent days. In view of this, a nanocrystal solid luminescent composite material was prepared using combustion processing technique and its identity was analyzed and further investigated. The precursor reagents were measured using the single pan analytical balance. A sample was synthesized and its functional group was identified using the FTIR spectroscopy and XRD studies as having similar properties to those in Batch No. JCPDS No. 77-1149 and in Base Code AMCSD 0008032. Its photoluminescence spectrum identified peaks located at 476 nm, 578 nm and 615 nm that were attributed to electronic transition from 4F9/2to 6H15/2, from 4F9/2to 6H13/2and from 4F9/2to 6H11/2respectively as the finger blue-prints of dysprosium [Dy3+] ion. Its crystalline sizes and strains were calculated using the Debay Scherrer’s equation and analyzed using the UDM model. The findings showed that the prepared sample had a superior homogeneity and further that the Dy3+influenced its formation. The mellite sample was identified to be Ca2MgSi2O7:Dy3+. Further analysis on the sample suggested that was a potential white light emitting luminescent material just like Ca2MgSi2O7:Tb3+phosphor and Sr2MgSi2O7:Dy3+phosphor.