BioTechniques (May 2015)

Rapid quantification of microRNAs in plasma using a fast real-time PCR system

  • William John Andrews,
  • Eoin Daniel Brown,
  • Margaret Dellett,
  • Ruth Esther Hogg,
  • David Arthur Simpson

DOI
https://doi.org/10.2144/000114287
Journal volume & issue
Vol. 58, no. 5
pp. 244 – 252

Abstract

Read online

The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers for a range of conditions. One rate-limiting factor in miRNA detection is the time taken to perform quantitative real-time PCR (qPCR) amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes. Quantitative PCR was performed on an xxpress thermal cycler (BJS Biotechnologies), which employs a resistive heating system and forced air cooling to achieve thermal ramp rates of 10°C/s, and a conventional Peltier-controlled LightCycler 480 system (Roche) ramping at 4.8°C/s. The quantification cycle (Cq) for detection of 18S rDNA from a standard genomic DNA sample was significantly more variable across the block (F-test, P = 2.4 × 10-25) for the xxpress (20.01 ± 0.47 sd) than for the LightCycler (19.87 ± 0.04 sd). RNA was extracted from human plasma, reverse transcribed, and a panel of miRNAs was amplified and detected using SYBR Green. The sensitivities of the two systems were broadly comparable–both detected a panel of miRNAs reliably, and both indicated similar relative abundances. The xxpress thermal cycler facilitates rapid qPCR detection of small RNAs and brings point-of-care diagnostics based upon detection of circulating miRNAs a step closer to reality.

Keywords