Sensors (May 2021)

Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires

  • Fernando-Juan Pérez-Porras,
  • Paula Triviño-Tarradas,
  • Carmen Cima-Rodríguez,
  • Jose-Emilio Meroño-de-Larriva,
  • Alfonso García-Ferrer,
  • Francisco-Javier Mesas-Carrascosa

DOI
https://doi.org/10.3390/s21113694
Journal volume & issue
Vol. 21, no. 11
p. 3694

Abstract

Read online

Wildfires are becoming more frequent in different parts of the globe, and the ability to predict when and where they will occur is a complex process. Identifying wildfire events with high probability of becoming a large wildfire is an important task for supporting initial attack planning. Different methods, including those that are physics-based, statistical, and based on machine learning (ML) are used in wildfire analysis. Among the whole, those based on machine learning are relatively novel. In addition, because the number of wildfires is much greater than the number of large wildfires, the dataset to be used in a ML model is imbalanced, resulting in overfitting or underfitting the results. In this manuscript, we propose to generate synthetic data from variables of interest together with ML models for the prediction of large wildfires. Specifically, five synthetic data generation methods have been evaluated, and their results are analyzed with four ML methods. The results yield an improvement in the prediction power when synthetic data are used, offering a new method to be taken into account in Decision Support Systems (DSS) when managing wildfires.

Keywords