BMC Neuroscience (Jul 2022)

Intersection of hippocampus and spinal cord: a focus on the hippocampal alpha-synuclein accumulation, dopaminergic receptors, neurogenesis, and cognitive function following spinal cord injury in male rats

  • Ahad Karimzadeh Kalkhoran,
  • Mohammad Reza Alipour,
  • Mohsen Jafarzadehgharehziaaddin,
  • Hamid Soltani Zangbar,
  • Parviz Shahabi

DOI
https://doi.org/10.1186/s12868-022-00729-5
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Following Spinal Cord Injury (SCI), innumerable inflammatory and degenerative fluctuations appear in the injured site, and even remotely in manifold areas of the brain. Howbeit, inflammatory, degenerative, and oscillatory changes of motor cortices have been demonstrated to be due to SCI, according to recent studies confirming the involvement of cognitive areas of the brain, such as hippocampus and prefrontal cortex. Therefore, addressing SCI induced cognitive complications via different sights can be contributory in the treatment approaches. Results Herein, we used 16 male Wistar rats (Sham = 8, SCI = 8). Immunohistochemical results revealed that spinal cord contusion significantly increases the accumulation of alpha-synuclein and decreases the expression of Doublecortin (DCX) in the hippocampal regions like Cornu Ammonis1 (CA1) and Dentate Gyrus (DG). Theses degenerative manifestations were parallel with a low expression of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), SRY (sex determining region Y)-box 2 (SOX2), and dopaminergic receptors (D1 and D5). Additionally, based on the TUNEL assay analysis, SCI significantly increased the number of apoptotic cells in the CA1 and DG regions. Cognitive function of the animals was assessed, using the O-X maze and Novel Object Recognition (NORT); the obtained findings indicted that after SCI, hippocampal neurodegeneration significantly coincides with the impairment of learning, memory and recognition capability of the injured animals. Conclusions Based on the obtained findings, herein SCI reduces neurogenesis, decreases the expression of D1 and D5, and increases apoptosis in the hippocampus, which are all associated with cognitive function deficits. Graphical Abstract

Keywords