Infectious Agents and Cancer (Oct 2024)
From virus to cancer: Epstein–Barr virus miRNA connection in Burkitt's lymphoma
Abstract
Abstract In Burkitt's lymphoma (BL), Epstein–Barr virus-encoded microRNAs (EBV miRNAs) are emerging as crucial regulatory agents that impact cellular and viral gene regulation. This review investigates the multifaceted functions of EBV miRNAs in the pathogenesis of Burkitt lymphoma. EBV miRNAs regulate several cellular processes that are essential for BL development, such as apoptosis, immune evasion, and cellular proliferation. These small, non-coding RNAs target both viral and host mRNAs, finely adjusting the cellular environment to favor oncogenesis. Prominent miRNAs, such as BART (BamHI-A rightward transcript) and BHRF1 (BamHI fragment H rightward open reading frame 1), are emphasized for their roles in tumor growth and immune regulation. For example, BART miRNAs prevent apoptosis by suppressing pro-apoptotic proteins, whereas BHRF1 miRNAs promote viral latency and immunological evasion. Understanding the intricate connections among EBV miRNAs and their targets illuminates BL pathogenesis and suggests novel treatment approaches. Targeting EBV miRNAs or their specific pathways offers a feasible option for developing innovative therapies that aim to disrupt the carcinogenic processes initiated by these viral components. future studies should focus on precisely mapping miRNA‒target networks and developing miRNA-based diagnostic and therapeutic tools. This comprehensive article highlights the importance of EBV miRNAs in Burkitt lymphoma, indicating their potential as biomarkers and targets for innovative treatment strategies. Graphical Abstract
Keywords