Scientific Reports (May 2023)
Overexpression of GRK2 in vascular smooth muscle leads to inappropriate hypertension and acute heart failure as in clinical scenario 1
Abstract
Abstract Clinical scenario 1 (CS1) is acute heart failure (HF) characterized by transient systolic blood pressure (SBP) elevation and pulmonary congestion. Although it is managed by vasodilators, the molecular mechanism remains unclear. The sympathetic nervous system plays a key role in HF, and desensitization of cardiac β-adrenergic receptor (AR) signaling due to G protein-coupled receptor kinase 2 (GRK2) upregulation is known. However, vascular β-AR signaling that regulates cardiac afterload remains unelucidated in HF. We hypothesized that upregulation of vascular GRK2 leads to pathological conditions similar to CS1. GRK2 was overexpressed in vascular smooth muscle (VSM) of normal adult male mice by peritoneally injected adeno-associated viral vectors driven by the myosin heavy chain 11 promoter. Upregulation of GRK2 in VSM of GRK2 overexpressing mice augmented the absolute increase in SBP (+ 22.5 ± 4.3 mmHg vs. + 36.0 ± 4.0 mmHg, P < 0.01) and lung wet weight (4.28 ± 0.05 mg/g vs. 4.76 ± 0.15 mg/g, P < 0.01) by epinephrine as compared to those in control mice. Additionally, the expression of brain natriuretic peptide mRNA was doubled in GRK2 overexpressing mice as compared to that in control mice (P < 0.05). These findings were similar to CS1. GRK2 overexpression in VSM may cause inappropriate hypertension and HF, as in CS1.