Osmotic Stress Alleviation in <i>Saccharomyces cerevisiae</i> for High Ethanol Fermentations with Different Wort Substrates
Rafael Douradinho,
Pietro Sica,
Fernando Tonoli,
Eduardo Mattos,
Matheus Oliveira,
Alana Pinto,
Layna Mota,
Tamires Faria,
Vitória Franco Costa,
Gabriela Leite,
Valter Arthur,
Suani Coelho,
Antonio Baptista
Affiliations
Rafael Douradinho
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Pietro Sica
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej, 40, 1821 Frederiksberg, Denmark
Fernando Tonoli
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Eduardo Mattos
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Matheus Oliveira
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Alana Pinto
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Layna Mota
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Tamires Faria
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Vitória Franco Costa
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Gabriela Leite
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
Valter Arthur
Center for Nuclear Energy in Agriculture, University of São Paulo, Centenário Avenue, 303, Piracicaba 13416-000, SP, Brazil
Suani Coelho
Institute of Energy and Environment, University of São Paulo, Prof. Luciano Gualberto Avenue, 1289, São Paulo 05508-900, SP, Brazil
Antonio Baptista
Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil
High-gravity fermentation, used for ethanol production from sugarcane, corn, and mixed substrates, offers several benefits. Yeast, a rapidly multiplying unicellular microorganism, can be adapted for high sugar and ethanol tolerance on a lab scale. However, different substrates can enhance fermentation efficiency. Our study consisted of two experiments. In the first, we compared simple batch feeding with a fed-batch system for yeast selection in high-gravity fermentation. We ran eight cycles with increasing initial sugar contents (50 to 300 g L−1). No significant differences were observed in the first seven cycles, but in the eighth, the fed-batch system showed lower glycerol and fructose contents and higher cell viability than the simple batch system. In the second experiment, we used the fed-batch system with 300 g L−1 from sugarcane, corn, and mixed wort. The results showed that mixed wort produced higher ethanol contents and greater fermentation efficiency compared to corn and sugarcane as substrates. In conclusion, our findings indicate that the fed-batch system is more suitable for high-gravity fermentation on a lab scale, and the combination of sugarcane juice and corn can enhance fermentation efficiency, paving the way for integrating these substrates in industrial ethanol production.