Land (Dec 2024)

Study on the Evolutionary Characteristics of Spatial and Temporal Patterns and Decoupling Effect of Urban Carbon Emissions in the Yangtze River Delta Region Based on Neural Network Optimized by Aquila Optimizer with Nighttime Light Data

  • Xichun Luo,
  • Chaoming Cai,
  • Honghao Zhao

DOI
https://doi.org/10.3390/land14010051
Journal volume & issue
Vol. 14, no. 1
p. 51

Abstract

Read online

China produces the largest amount of CO2 emissions since 2007 and is the second largest economy in the world since 2010, and the Yangtze River Delta (YRD) area plays a crucial role in promoting low-carbon development in China. Analyzing its evolutionary characteristics of spatial and temporal patterns and its decoupling effect is of great importance for the purpose of low-carbon development. However, this analysis relies on the estimation of CO2 emissions. Recently, neural network-based models are widely used for CO2 emission estimation. To improve the performance of neural network models, the Aquila Optimizer (AO) algorithm is introduced to optimize the hyper-parameter values in the back-propagation (BP) neural network model in this research due to the appealing searching capability of AO over traditional algorithms. Such a model is referred to as the AO-BP model, and this paper uses the AO-BP model to estimate carbon emissions, compiles a city-level CO2 emission inventory for the YRD region, and analyzes the spatial dependence, spatial correlation characteristics, and decoupling status of carbon emissions. The results show that the CO2 emissions in the YRD region show a spatial distribution pattern of “low in the west, high in the east, and developing towards the west”. There exists a spatial dependence of carbon emissions in the cities from 2001 to 2022, except for the year 2000, and the local spatial autocorrelation test shows that high-high is concentrated in Shanghai and Suzhou, and low-low is mainly centered in Anqing, Chizhou, and Huangshan in southern Anhui. Furthermore, there exist significant regional differences in the correlation levels of CO2 emissions between cities, with a trend of low in the west and high in the east in location, and a decreasing and then increasing trend in time. From 2000 to 2022, the decoupling of carbon emissions and economic growth shows a steadily improving trend.

Keywords