eLife (Dec 2019)

Robust cullin-RING ligase function is established by a multiplicity of poly-ubiquitylation pathways

  • Spencer Hill,
  • Kurt Reichermeier,
  • Daniel C Scott,
  • Lorena Samentar,
  • Jasmin Coulombe-Huntington,
  • Luisa Izzi,
  • Xiaojing Tang,
  • Rebeca Ibarra,
  • Thierry Bertomeu,
  • Annie Moradian,
  • Michael J Sweredoski,
  • Nora Caberoy,
  • Brenda A Schulman,
  • Frank Sicheri,
  • Mike Tyers,
  • Gary Kleiger

DOI
https://doi.org/10.7554/eLife.51163
Journal volume & issue
Vol. 8

Abstract

Read online

The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build poly-ubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2-RING ligase substrate HIF1α. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.

Keywords