Geodesy and Geodynamics (Mar 2023)

GBO algorithm for seismic source parameters inversion

  • Leyang Wang,
  • Han Li

Journal volume & issue
Vol. 14, no. 2
pp. 182 – 190

Abstract

Read online

The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault parameters inversion has nonlinear characteristics, and the gradient-based optimizer (GBO) has the characteristics of fast convergence speed and falling into local optimum hardly. This paper applies GBO algorithm to simulated earthquakes and real LuShan earthquakes in the nonlinear inversion of the Okada model to obtain the source parameters. The simulated earthquake experiment results show that the algorithm is stable, and the seismic source parameters obtained by GBO are slightly closer to the true value than the multi peak particle swarm optimization (MPSO). In the 2013 LuShan earthquake experiment, the root mean square error between the deformation after forwarding of fault parameters obtained by the introduced GBO algorithm and the surface observation deformation was 3.703 mm, slightly better than 3.708 mm calculated by the MPSO. Moreover, the inversion result of GBO algorithm is better than MPSO algorithm in stability. The above results show that the introduced GBO algorithm has a certain practical application value in seismic fault source parameters inversion.

Keywords