Actuators (Dec 2015)

What Is an Artificial Muscle? A Systemic Approach.

  • Bertrand Tondu

DOI
https://doi.org/10.3390/act4040336
Journal volume & issue
Vol. 4, no. 4
pp. 336 – 352

Abstract

Read online

Artificial muscles define a large category of actuators we propose to analyze in a systemic framework by considering any artificial muscle as an open-loop stable system for any output which represents an artificial muscle dimension resulting from its “contraction”, understood in a broad meaning. This approach makes it possible to distinguish the artificial muscle from other actuators and to specify an original model for a linear artificial muscle, according to the theory of linear systems. Such a linear artificial muscle concept exhibits a constant stiffness independent on its control value. It is shown that a biomimetic actuator, made of two antagonist artificial muscles, requires that artificial muscle static characteristic, even in its most simplified form, is non-linear in the meaning of systems theory, to make possible the control of both actuator position and stiffness. However, we also attempt to show that a linear viscous damping can be a practical way for the dynamic behavior of the artificial muscle to be in relatively good accordance with the so-called Hill curve, interpreted as the dynamic characteristic linking the maximum contraction velocity of the artificial muscle to varying loads lifted against gravity.

Keywords