NeuroImage (Oct 2022)
Effective connectivity reveals distinctive patterns in response to others’ genuine affective experience of disgust
Abstract
Empathy is significantly influenced by the identification of others’ emotions. In a recent study, we have found increased activation in the anterior insular cortex (aIns) that could be attributed to affect sharing rather than perceptual saliency, when seeing another person genuinely experiencing pain as opposed to merely acting to be in pain. In that prior study, effective connectivity between aIns and the right supramarginal gyrus (rSMG) was revealed to represent what another person really feels. In the present study, we used a similar paradigm to investigate the corresponding neural signatures in the domain of empathy for disgust - with participants seeing others genuinely sniffing unpleasant odors as compared to pretending to smell something disgusting (in fact the disgust expressions in both conditions were acted for reasons of experimental control). Consistent with the previous findings on pain, we found stronger activations in aIns associated with affect sharing for genuine disgust (inferred) compared with pretended disgust. However, instead of rSMG we found engagement of the olfactory cortex. Using dynamic causal modeling (DCM), we estimated the neural dynamics of aIns and the olfactory cortex between the genuine and pretended conditions. This revealed an increased excitatory modulatory effect for genuine disgust compared to pretended disgust. For genuine disgust only, brain-to-behavior regression analyses highlighted a link between the observed modulatory effect and a few empathic traits. Altogether, the current findings complement and expand our previous work, by showing that perceptual saliency alone does not explain responses in the insular cortex. Moreover, it reveals that different brain networks are implicated in a modality-specific way when sharing the affective experiences associated with pain vs. disgust.