Molecular Therapy: Nucleic Acids (Sep 2020)

Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy

  • Estefanía Cerro-Herreros,
  • Irene González-Martínez,
  • Nerea Moreno-Cervera,
  • Sarah Overby,
  • Manuel Pérez-Alonso,
  • Beatriz Llamusí,
  • Rubén Artero

Journal volume & issue
Vol. 21
pp. 837 – 849

Abstract

Read online

Myotonic dystrophy type 1 (DM1) is a chronically debilitating, rare genetic disease that originates from an expansion of a noncoding CTG repeat in the dystrophia myotonica protein kinase (DMPK) gene. The expansion becomes pathogenic when DMPK transcripts contain 50 or more repetitions due to the sequestration of the muscleblind-like (MBNL) family of proteins. Depletion of MBNLs causes alterations in splicing patterns in transcripts that contribute to clinical symptoms such as myotonia and muscle weakness and wasting. We previously found that microRNA (miR)-23b directly regulates MBNL1 in DM1 myoblasts and mice and that antisense technology (“antagomiRs”) blocking this microRNA (miRNA) boosts MBNL1 protein levels. Here, we show the therapeutic effect over time in response to administration of antagomiR-23b as a treatment in human skeletal actin long repeat (HSALR) mice. Subcutaneous administration of antagomiR-23b upregulated the expression of MBNL1 protein and rescued splicing alterations, grip strength, and myotonia in a dose-dependent manner with long-lasting effects. Additionally, the effects of the treatment on grip strength and myotonia were still slightly notable after 45 days. The pharmacokinetic data obtained provide further evidence that miR-23b could be a valid therapeutic target for DM1.

Keywords