Machine Learning: Science and Technology (Jan 2024)

Maven: a multimodal foundation model for supernova science

  • Gemma Zhang,
  • Thomas Helfer,
  • Alexander T Gagliano,
  • Siddharth Mishra-Sharma,
  • V Ashley Villar

DOI
https://doi.org/10.1088/2632-2153/ad990d
Journal volume & issue
Vol. 5, no. 4
p. 045069

Abstract

Read online

A common setting in astronomy is the availability of a small number of high-quality observations, and larger amounts of either lower-quality observations or synthetic data from simplified models. Time-domain astrophysics is a canonical example of this imbalance, with the number of supernovae observed photometrically outpacing the number observed spectroscopically by multiple orders of magnitude. At the same time, no data-driven models exist to understand these photometric and spectroscopic observables in a common context. Contrastive learning objectives, which have grown in popularity for aligning distinct data modalities in a shared embedding space, provide a potential solution to extract information from these modalities. We present Maven, the first foundation model for supernova science. To construct Maven, we first pre-train our model to align photometry and spectroscopy from 0.5 M synthetic supernovae using a contrastive objective. We then fine-tune the model on 4702 observed supernovae from the Zwicky transient facility. Maven reaches state-of-the-art performance on both classification and redshift estimation, despite the embeddings not being explicitly optimized for these tasks. Through ablation studies, we show that pre-training with synthetic data improves overall performance. In the upcoming era of the Vera C. Rubin observatory, Maven will serve as a valuable tool for leveraging large, unlabeled and multimodal time-domain datasets.

Keywords