Vehicles (Oct 2023)

Autonomously Steering Vehicles along Unmarked Roads Using Low-Cost Sensing and Computational Systems

  • Giuseppe DeRose,
  • Austin Ramsey,
  • Justin Dombecki,
  • Nicholas Paul,
  • Chan-Jin Chung

DOI
https://doi.org/10.3390/vehicles5040077
Journal volume & issue
Vol. 5, no. 4
pp. 1400 – 1422

Abstract

Read online

The vast majority of autonomous driving systems are limited to applications on roads with clear lane markings and are implemented using commercial-grade sensing systems coupled with specialized graphic accelerator hardware. This research reviews an alternative approach for autonomously steering vehicles that eliminates the dependency on road markings and specialized hardware. A combination of machine vision, machine learning, and artificial intelligence based on popular pre-trained Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) was used to drive a vehicle along roads lacking lane markings (unmarked roads). The team developed and tested this approach on the Autonomous Campus Transport (ACTor) vehicle—an autonomous vehicle development and research platform coupled with a low-cost webcam-based sensing system and minimal computational resources. The proposed solution was evaluated on real-world roads and varying environmental conditions. It was found that this solution may be used to successfully navigate unmarked roads autonomously with acceptable road-following behavior.

Keywords