Energies (Apr 2022)

Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas

  • Dallatu Abbas Umar,
  • Chong Tak Yaw,
  • Siaw Paw Koh,
  • Sieh Kiong Tiong,
  • Ammar Ahmed Alkahtani,
  • Talal Yusaf

DOI
https://doi.org/10.3390/en15093033
Journal volume & issue
Vol. 15, no. 9
p. 3033

Abstract

Read online

Wind turbine blades perform the most important function in the wind energy conversion process. It plays the most vital role of absorbing the kinetic energy of the wind, and converting it to mechanical energy before it is transformed into electrical energy by generators. In this work, National Advisory Committee for Aeronautics (NACA) 4412 and SG6043 airfoils were selected to design a small horizontal axis variable speed wind turbine blade for harvesting efficient energy from low wind speed areas. Due to the low wind profile of the targeted area, a blade of one-meter radius was considered in this study. To attain the set objectives of fast starting time and generate more torque and power at low wind speeds, optimization was carryout by varying Reynolds numbers (Re) on tip speed ratios (TSR) values of 4, 5, and 6. The blade element momentum (BEM) method was developed in MATLAB programming code to iteratively find the best twist and chord distributions along the one-meter blade length for each Re and tip speed ratio (TSR) value. To further enhance the blade performance, the twist and chord distributions were transferred to Q-blade software, where simulations of the power coefficients (Cp) were performed and further optimized by varying the angles of attack. The highest power coefficients values of 0.42, 0.43, and 0.44 were recorded with NACA 4412 rotor blades, and 0.43, 0.44, and 0.45 with SG6043 rotor blades. At the Re of 3.0 × 105, the blades were able to harvest maximum power of 144.73 watts (W), 159.69 W, and 201.04 W with the NACA 4412 and 213.15 W, 226.44 W, 245.09 W with the SG6043 at the TSR of 4, 5, and 6 respectively. The lowest cut-in speed of 1.80 m/s and 1.70 m/s were achieved with NACA 4412 and SG6043 airfoils at TSR 4. At a low wind speed of 4 m/s, the blades were able to harness an efficient power of 79.3. W and 80.10 W with both rotor blades at the TSR 4 and 6 accordingly.

Keywords