Animal (Jan 2019)

Coupling a reproductive function model to a productive function model to simulate lifetime performance in dairy cows

  • O. Martin,
  • P. Blavy,
  • M. Derks,
  • N.C. Friggens,
  • F. Blanc

Journal volume & issue
Vol. 13, no. 3
pp. 570 – 579

Abstract

Read online

Reproductive success is a key component of lifetime performance in dairy cows but is difficult to predict due to interactions with productive function. Accordingly, this study introduces a dynamic model to simulate the productive and reproductive performance of a cow during her lifetime. The cow model consists of an existing productive function model (GARUNS) which is coupled to a new reproductive function model (RFM). The GARUNS model simulates the individual productive performance of a dairy cow throughout her lifespan. It provides, with a daily time step, changes in BW and composition, fetal growth, milk yield and composition and food intake. Genetic-scaling parameters are incorporated to scale individual performance and simulate differences within and between breeds. GARUNS responds to the discrete event signals ‘conception’ and ‘death’ (of embryo or fetus) generated by RFM. In turn, RFM responds to the GARUNS outputs concerning the cow’s energetic status: the daily total processed metabolizable energy per kg BW (TPEW) and the net energy balance (EB). Reproductive function model models the reproductive system as a compartmental system transitioning between nine competence stages: prepubertal (PRPB), anestrous (ANST), anovulatory (ANOV), pre-ovulating (PREO), ovulating (OVUL), post-ovulating (PSTO), luteinizing (LUTZ), luteal (LUTL) and gestating (GEST). The transition from PRPB to ANST represents the start of reproductive activity at puberty. The cyclic path through ANST, PREO, OVUL, PSTO, LUTZ and LUTL forms the regime of ovulatory cycles, whereas ANOV and GEST are transient stages that interrupt this regime. Anovulatory refers explicitly to a stage in which ovulation cannot occur (i.e. interrupted cyclicity), whereas ANST is a pivotal stage within ovulatory cycles. Reproductive function model generates estradiol and progesterone hormonal profiles consistent with reference profiles derived from literature. Cyclicity is impacted by the GARUNS output EB and clearance of estradiol is impacted by TPEW. A farming system model was designed to describe different farm protocols of heat detection, insemination, feeding (amount and energy density), drying-off and culling. Results of model simulation (10 000 simulations of individual cows over 5000 days lifetime period, with randomly drawn genetic-scaling parameters and standard diet) are consistent with literature for reproductive performance. This model allows simulation of deviations in reproductive trajectories along physiological stages of the cow reproductive cycle. It thus provides the basis for evaluation of the relative importance of different factors affecting fertility at individual cow and herd levels across different breeds and management environments.

Keywords