Breast (Apr 2020)
Improving breast cancer care coordination and symptom management by using AI driven predictive toolkits
Abstract
Integrated breast cancer care is complex, marked by multiple hand-offs between primary care and specialists over an extensive period of time. Communication is essential for treatment compliance, lowering error and complication risk, as well as handling co-morbidity. The director role of care, however, becomes often unclear, and patients remain lost across departments. Digital tools can add significant value to care communication but need clarity about the directives to perform in the care team. In effective breast cancer care, multidisciplinary team meetings can drive care planning, create directives and structured data collection. Subsequently, nurse navigators can take the director’s role and become a pivotal determinant for patient care continuity. In the complexity of care, automated AI driven planning can facilitate their tasks, however, human intervention stays needed for psychosocial support and tackling unexpected urgency. Care allocation of patients across centres, is often still done by hand and phone demanding time due to overbooked agenda’s and discontinuous system solutions limited by privacy rules and moreover, competition among providers. Collection of complete outcome information is limited to specific collaborative networks today. With data continuity over time, AI tools can facilitate both care allocation and risk prediction which may unveil non-compliance due to local scarce resources, distance and costs. Applied research is needed to bring AI modelling into clinical practice and drive well-coordinated, patient-centric cancer care in the complex web of modern healthcare today.