Applied Sciences (May 2023)

MIDOM—A DICOM-Based Medical Image Communication System

  • Branimir Pervan,
  • Sinisa Tomic,
  • Hana Ivandic,
  • Josip Knezovic

DOI
https://doi.org/10.3390/app13106075
Journal volume & issue
Vol. 13, no. 10
p. 6075

Abstract

Read online

Despite the existing medical infrastructure being limited in terms of interoperability, the amount of medical multimedia transferred over the network and shared through various channels increases rapidly. In search of consultations with colleagues, medical professionals with the consent of their patients, usually exchange medical multimedia, mainly in the form of images, by using standard instant messaging services which utilize lossy compression algorithms. That consultation paradigm can easily lead to losses in image representation that can be misinterpreted and lead to the wrong diagnosis. This paper presents MIDOM—Medical Imaging and Diagnostics on the Move, a DICOM-based medical image communication system enhanced with a couple of variants of our previously developed custom lossless Classification and Blending Predictor Coder (CBPC) compression method. The system generally exploits the idea that end devices used by the general population and medical professionals alike are satisfactorily performant and energy-efficient, up to a point to support custom and complex compression methods successfully. The system has been implemented and appropriately integrated with Orthanc, a lightweight DICOM server, and a medical images storing PACS server. We benchmarked the system thoroughly with five real-world anonymized medical image sets in terms of compression ratios and latency reduction, aiming to simulate scenarios in which the availability of the medical services might be hardly reachable or in other ways limited. The results clearly show that our system enhanced with the compression methods in the question pays off in nearly every testing scenario by lowering the network latency to at least 60% of the latency required to send raw and uncompressed image sets and 25% in the best-case, while maintaining the perfect reconstruction of medical images and, thus, providing a more suitable environment for healthcare applications.

Keywords