Molecular Medicine (Nov 2024)
PI3K p85α/HIF-1α accelerates the development of pulmonary arterial hypertension by regulating fatty acid uptake and mitophagy
Abstract
Abstract Background Pulmonary arterial hypertension (PAH) is characterized by lipid accumulation and mitochondrial dysfunction. This study was designed to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) on fatty acid uptake and mitophagy in PAH. Methods Peripheral blood samples were obtained from PAH patients. Human pulmonary arterial smooth muscle cells and rat cardiac myoblasts H9c2 were subjected to hypoxia treatment. Male Sprague–Dawley rats were treated with monocrotaline (MCT). Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary artery remodeling, and lipid accumulation were measured. Cell proliferation and ROS accumulation were assessed. Mitochondrial damage and autophagosome formation were observed. Co-immunoprecipitation was performed to verify the interaction between HIF-1α and CD36/PI3K p85α. Results HIF-1α, CD36, Parkin, and PINK1 were upregulated in PAH samples. HIF-1α knockdown or PI3K p85α knockdown restricted the expression of HIF-1α, PI3K p85α, Parkin, PINK1, and CD36, inhibited hPASMC proliferation, promoted H9c2 cell proliferation, reduced ROS accumulation, and suppressed mitophagy. CD36 knockdown showed opposite effects to HIF-1α knockdown, which were reversed by palmitic acid. The HIF-1α activator dimethyloxalylglycine reversed the inhibitory effect of Parkin knockdown on mitophagy. In MCT-induced rats, the HIF-1α antagonist 2-methoxyestradiol (2ME) reduced RVSP, RVHI, pulmonary artery remodeling, lipid accumulation, and mitophagy. Recombinant CD36 abolished the therapeutic effect of 2ME but inhibited mitophagy. Activation of Parkin/PINK1 by salidroside (Sal) promoted mitophagy to ameliorate the pathological features of PAH-like rats, and 2ME further enhanced the therapeutic outcome of Sal. Conclusion PI3K p85α/HIF-1α induced CD36-mediated fatty acid uptake and Parkin/PINK1-dependent mitophagy to accelerate the progression of experimental PAH. Graphical Abstract
Keywords