REM: International Engineering Journal (Sep 2020)
FEM-DEM simulation of Uniaxial Compressive Strength (UCS) laboratory tests
Abstract
Abstract Finite/discrete element methods (FDEM) are hybrid numerical models that use algorithms to analyze the transition from continuous to discontinuous. This type of formulation allows modeling physical laboratory tests with greater proximity to reality. This article proposes to simulate the average behavior of a uniaxial compression test campaign. The tests were modeled and calibrated based on the strength and the fracture pattern using Geomechanica Inc. Irazu two-dimensional software. The simulated results were analyzed by the mean standard deviation of approximately 3000 elements in the middle third of the model, the same region where the clip gages are located in the physical test. The obtained results show that FDEM can replicate the laboratory test with great similarity.
Keywords