Fractal and Fractional (Dec 2022)
Correlation Analysis between Rail Track Geometry and Car-Body Vibration Based on Fractal Theory
Abstract
The effect of track geometry on vehicle vibration is a major concern in high-speed rail (HSR) operation from the perspectives of ride comfort and safety. However, how to quantitatively characterize the relation between them remains a problem to be solved in track quality assessment. By using fractal analysis, this paper studies the detailed correlation between track surface and alignment irregularities and car body vertical and lateral acceleration in various wavelength ranges. The time-frequency features of the track irregularity and car-body acceleration are first analyzed based on empirical mode decomposition (EMD). Then, the fractal features of the inspection data are determined by calculating the Hurst exponent of their intrinsic mode functions (IMFs). Finally, the fractal dimensions of the track irregularity and car-body acceleration are obtained, and the correlation between their fractal dimensions with respect to different IMFs is revealed using regression analysis. The results show that the fractal dimension is only related to the roughness of the IMF waveforms of the track irregularity and car-body vibration and is irrelevant to the amplitude of the time series of the data; the correlation coefficient of the fractal dimension of the track irregularity and car-body acceleration is greater than 0.7 for wavelengths greater than 30 m, indicating that the relationship between track irregularity and car-body vibration acceleration is more obvious for long wavelengths. The findings of this research could be used for optimizing HSR track maintenance work from the viewpoint of the ride quality of high-speed trains.
Keywords