Energies (Jan 2019)

Multi-Scale and Multi-Dimensional Thermal Modeling of Lithium-Ion Batteries

  • Geonhui Gwak,
  • Hyunchul Ju

DOI
https://doi.org/10.3390/en12030374
Journal volume & issue
Vol. 12, no. 3
p. 374

Abstract

Read online

In this study, we present a three-dimensional (3-D), multi-scale, multi-physics lithium-ion battery (LIB) model wherein a microscale spherical particle model is applied to an electrode particle domain and a comprehensive 3-D continuum model is applied to a single cell domain consisting of current collectors, porous electrodes, and a separator. Particular emphasis is placed on capturing the phase transition process inside the lithium iron phosphate (LFP) particles that significantly influences the LIB charge and discharge behaviors. The model is first validated against the experimental data measured at various discharge rates. In general, the model predictions compare well with the experimental data and further highlight key electrochemical and transport phenomena occurring in LIBs. Besides elucidating the phase transition evolution inside LFP particles and location-specific heat generation mechanism, multi-dimensional contours of species concentration, temperature, and current density are analyzed under a 3-D cell configuration to provide valuable insight into the charge and discharge characteristics of LIBs. The present multi-scale LIB model can be applied to a realistic LIB geometry to search for the optimal design and operating conditions.

Keywords