Results in Physics (Mar 2018)

Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

  • S. Yonatan Mulushoa,
  • N. Murali,
  • M. Tulu Wegayehu,
  • S.J. Margarette,
  • K. Samatha

Journal volume & issue
Vol. 8
pp. 772 – 779

Abstract

Read online

Cu-Cr substituted magnesium ferrite materials (Mg1 − xCuxCrxFe21 − xO4 with x = 0.0–0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size. Keywords: Solid state reaction, X-ray diffraction, Crystallite size, Magnetic and electrical properties, Saturation magnetization