Alzheimer’s Research & Therapy (Feb 2023)

Brain reserve contributes to distinguishing preclinical Alzheimer’s stages 1 and 2

  • Zerrin Yildirim,
  • Firuze Delen,
  • David Berron,
  • Hannah Baumeister,
  • Gabriel Ziegler,
  • Hartmut Schütze,
  • Wenzel Glanz,
  • Laura Dobisch,
  • Oliver Peters,
  • Silka Dawn Freiesleben,
  • Luisa-Sophie Schneider,
  • Josef Priller,
  • Eike Jakob Spruth,
  • Anja Schneider,
  • Klaus Fliessbach,
  • Jens Wiltfang,
  • Björn-Hendrik Schott,
  • Dix Meiberth,
  • Katharina Buerger,
  • Daniel Janowitz,
  • Robert Perneczky,
  • Boris-Stephan Rauchmann,
  • Stefan Teipel,
  • Ingo Kilimann,
  • Christoph Laske,
  • Matthias H. Munk,
  • Annika Spottke,
  • Nina Roy,
  • Michael Heneka,
  • Frederic Brosseron,
  • Michael Wagner,
  • Sandra Roeske,
  • Alfredo Ramirez,
  • Michael Ewers,
  • Peter Dechent,
  • Stefan Hetzer,
  • Klaus Scheffler,
  • Luca Kleineidam,
  • Steffen Wolfsgruber,
  • Renat Yakupov,
  • Matthias Schmid,
  • Moritz Berger,
  • Hakan Gurvit,
  • Frank Jessen,
  • Emrah Duzel

DOI
https://doi.org/10.1186/s13195-023-01187-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background In preclinical Alzheimer’s disease, it is unclear why some individuals with amyloid pathologic change are asymptomatic (stage 1), whereas others experience subjective cognitive decline (SCD, stage 2). Here, we examined the association of stage 1 vs. stage 2 with structural brain reserve in memory-related brain regions. Methods We tested whether the volumes of hippocampal subfields and parahippocampal regions were larger in individuals at stage 1 compared to asymptomatic amyloid-negative older adults (healthy controls, HCs). We also tested whether individuals with stage 2 would show the opposite pattern, namely smaller brain volumes than in amyloid-negative individuals with SCD. Participants with cerebrospinal fluid (CSF) biomarker data and bilateral volumetric MRI data from the observational, multi-centric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study were included. The sample comprised 95 amyloid-negative and 26 amyloid-positive asymptomatic participants as well as 104 amyloid-negative and 47 amyloid-positive individuals with SCD. Volumes were based on high-resolution T2-weighted images and automatic segmentation with manual correction according to a recently established high-resolution segmentation protocol. Results In asymptomatic individuals, brain volumes of hippocampal subfields and of the parahippocampal cortex were numerically larger in stage 1 compared to HCs, whereas the opposite was the case in individuals with SCD. MANOVAs with volumes as dependent data and age, sex, years of education, and DELCODE site as covariates showed a significant interaction between diagnosis (asymptomatic versus SCD) and amyloid status (Aß42/40 negative versus positive) for hippocampal subfields. Post hoc paired comparisons taking into account the same covariates showed that dentate gyrus and CA1 volumes in SCD were significantly smaller in amyloid-positive than negative individuals. In contrast, CA1 volumes were significantly (p = 0.014) larger in stage 1 compared with HCs. Conclusions These data indicate that HCs and stages 1 and 2 do not correspond to linear brain volume reduction. Instead, stage 1 is associated with larger than expected volumes of hippocampal subfields in the face of amyloid pathology. This indicates a brain reserve mechanism in stage 1 that enables individuals with amyloid pathologic change to be cognitively normal and asymptomatic without subjective cognitive decline.

Keywords