Materials (Nov 2022)

Role of Carbon Phase in the Formation of Foam Glass Porous Structure

  • Boris M. Goltsman,
  • Elena A. Yatsenko

DOI
https://doi.org/10.3390/ma15227913
Journal volume & issue
Vol. 15, no. 22
p. 7913

Abstract

Read online

The production of durable, non-combustible, heat-insulating materials is currently very important. One of the most promising materials is foam glass. Modern enterprises widely use organic foaming agents in foam glass production. The purpose of this work is to study the role of the carbon phase formed during the organic foaming agent’s (glycerol) thermal destruction in the processes of glass mass foaming. The samples were synthesized using the powder method with high-temperature treatment. Different ratios of glycerol and waterglass in a foaming mixture showed that amount of glycerol should be less than in waterglass. Otherwise, the amount is excessive and the glycerol burns out. It was shown that the quantitative description of the carbon phase structure and properties is complicated by its nanometer size and fusion into the glass. Theoretical calculations demonstrate that carbon particle size cannot be greater than 535 nm. Using a set of methods, it was proved that the carbon phase is represented by nanometer particles of amorphous sp2-carbon. Therefore, the foaming mechanism includes nanoparticles settling and immersing into the glass surface, a reaction of carbon with the sulfate ions from glass with a release of gases. Conclusions on foaming intensification via using sulfur additions and other organic foaming agents were drawn.

Keywords