Functional Ultrasound Imaging of Cocaine Induced Brain-Wide Neurovascular Response
Shaoyuan Yan,
Nan Huang,
Yusheng Tong,
Yousheng Shu,
Qiumin Le,
Dean Ta,
Kailiang Xu
Affiliations
Shaoyuan Yan
Department of Biomedical Engineering, Fudan University, Shanghai 200438, China
Nan Huang
School of Basic Medical Sciences, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
Yusheng Tong
Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
Yousheng Shu
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai 200032, China
Qiumin Le
School of Basic Medical Sciences, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
Dean Ta
Department of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Corresponding authors.
Kailiang Xu
Department of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China; Corresponding authors.
Extensive studies have reported that cocaine can lead to potent reduction in cerebral blood flow. However, the mechanisms of the cocaine's impact on the neural and vascular system of brain in temporal and spatial aspects remain elusive. Functional ultrasound (fUS) is a novel neurovascular imaging modality acclaimed for its deep penetration, superior spatiotemporal resolution, and high sensitivity to small blood flow dynamics. This study aims to use fUS technique to characterize the regional differences in hemodynamic responses to acute cocaine administration. The CBV responses revealed that the cortex and ventral tegmental area (VTA) were the regions most significantly affected by cocaine. In addition, electroencephalography (EEG) was also utilized to assess the neural activities in the cortex and VTA. In the cortex, the observed CBV changes responded more rapidly to cocaine than local field potential (LFP) activities, indicating that prior to acting on the central nervous system, cocaine may first affect the peripheral nervous system, accelerating heart rate and increasing cardiac output. Both hemodynamic and neural responses showed opposing patterns between cortical and VTA brain regions. Based on these observations, we proposed a two-stage hypothesis to explain acute cocaine's multifaceted impact on the brain. This study underscores the efficacy of fUS as a powerful and sensitive tool for tracking cocaine-induced hemodynamic changes and enhances our understanding of cocaine's effects on the neurovascular system.