Applied Sciences (Dec 2024)
Prediction and Optimization of Surface Roughness and Cutting Forces in Turning Process Using ANN, SHAP Analysis, and Hybrid MCDM Method
Abstract
As manufacturing technologies advance, the integration of artificial neural networks in machining high-hardness materials and optimization of multi-objective parameters is becoming increasingly prevalent. By employing modeling and optimization strategies during the machining of such materials, manufacturers can improve surface roughness and tool life while minimizing cutting time, tool vibrations, and cutting forces. In this paper, the aim was to analyze the impact of input parameters (cutting speed, feed rate, depth of cut, and insert radius) on surface roughness and cutting forces during the machining of 90MnCrV7 using feed-forward neural network models and SHAP analysis. Afterward, multi-criteria optimization was applied to determine the optimal parameter levels to achieve minimum surface roughness and cutting forces using the modified PSI-TOPSIS method. According to the SHAP analysis, the insert radius has the most significant impact on the surface roughness and passive force, while in the multi-criteria analysis, according to ANOVA results, the insert radius has the most significant impact on all considered outputs. The results show that an insert radius of 0.8 mm, a cutting speed of 260 m/min, a feed rate of 0.08 mm, and a depth of cut of 0.5 mm are the optimal combination of input parameters.
Keywords