Microstructure evolution of polycrystalline silicon by molecular dynamics simulation
Xiao Chen,
Jianning Ding,
Cunhua Jiang,
Zunfeng Liu,
Ningyi Yuan
Affiliations
Xiao Chen
Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou 213164, China
Jianning Ding
Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou 213164, China
Cunhua Jiang
Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou 213164, China
Zunfeng Liu
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
Ningyi Yuan
Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou 213164, China
Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110), (111), and (112) planes were extruded by the (100) plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.