New Bisabosquals from Stachybotrys sp. PH30583 Elicited on Solid Media
Bao-Hui Ruan,
Shu-Quan Li,
Xue-Qiong Yang,
Ya-Bin Yang,
Ya-Mei Wu,
Li-Jiao Shi,
Hai-Yue Yin,
Hao Zhou,
Zhong-Tao Ding
Affiliations
Bao-Hui Ruan
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Shu-Quan Li
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Xue-Qiong Yang
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Ya-Bin Yang
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Ya-Mei Wu
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Li-Jiao Shi
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Hai-Yue Yin
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Hao Zhou
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Zhong-Tao Ding
Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China
Stachybotrys sp. PH30583 cultured in liquid medium only led to one structure type of novel isochroman dimers. Using the one strain-many compounds strategy, the reinvestigation of the metabolites from Stachybotrys sp. PH30583 cultured in rice solid medium led to the isolation of four triprenyl phenols, including two new bisabosquals and two known phenylspirodrimanes. Nitrobisabosquals A and B (1 and 2) are the first case of pyrrolidone-bisabosquals reported in literature. Totally different compounds were isolated using rice solid medium, compared with those isolated using liquid medium, so that rice solid medium presents a key factor in the production of triprenyl phenols. Compound 1 exhibited cytotoxicity against tumor cells, A-549, HL-60, MCF-7 SMMC-7721, and SW480, as well as weak anticoagulant activity with activated partial thromboplastin time (APTT) of 32.1 ± 0.17 s (p < 0.05 vs. Con.) at a concentration of 5 mM. Triprenyl phenol metabolites could be used as chemotaxonomic markers for Stachybotrys.