Applied Sciences (Apr 2020)

Buckling Analysis of Interspersed Railway Tracks

  • Chayut Ngamkhanong,
  • Chuah Ming Wey,
  • Sakdirat Kaewunruen

DOI
https://doi.org/10.3390/app10093091
Journal volume & issue
Vol. 10, no. 9
p. 3091

Abstract

Read online

Nowadays, timber sleepers are still used for ballasted railway tracks to carry passengers and transport goods. However, the process of natural decay causes the problem of timber sleeper degradation over time. A temporary “interspersed” approach is used to replace rotten timbers with concrete sleepers. This implementation has several inadequacies, as interspersed railway tracks have inconsistent stiffness and experience significant deterioration over the years. Increased heat due to the change in the global climate can induce a compression force in the continuous welded rail (CWR), leading to a change in track geometry called “track buckling”. A literature review shows that track buckling on plain tracks has been widely studied. However, the buckling of interspersed tracks has not been fully studied. This study presents 3D finite element modelling of interspersed railway tracks subjected to temperature change. The effect of the boundary conditions on the buckling shape is considered. The obtained results show that the interspersed approach may reduce the likelihood of track buckling. This study is the world’s first to investigate the buckling behaviour of interspersed railway tracks. The insight into interspersed railway tracks derived from this study will underpin the life cycle design, maintenance, and construction strategies related to the use of concrete sleepers as spot replacement sleepers in ageing railway track systems. The outcome of this study will help track engineers to improve the inspection of the lateral stiffness of interspersed tracks in areas prone to extreme temperature.

Keywords