Flow Modeling of a Non-Newtonian Viscous Fluid in Elastic-Wall Microchannels
A. Rubio Martínez,
A. E. Chávez Castellanos,
N. A. Noguez Méndez,
F. Aragón Rivera,
M. Pliego Díaz,
L. Di G. Sigalotti,
C. A. Vargas
Affiliations
A. Rubio Martínez
Tecnológico Nacional de México, Campus Querétaro, Av. Tecnológico s/n esq. Mariano Escobedo, Centro Histórico, Querétaro 7600, Mexico
A. E. Chávez Castellanos
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
N. A. Noguez Méndez
Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Villa Quietud, Ciudad de México 04960, Mexico
F. Aragón Rivera
Departamento de Energía, Universidad Autónoma Metropolitana, Unidad Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotzalco, Ciudad de México 02128, Mexico
M. Pliego Díaz
Tecnológico Nacional de México, Campus Querétaro, Av. Tecnológico s/n esq. Mariano Escobedo, Centro Histórico, Querétaro 7600, Mexico
L. Di G. Sigalotti
Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotzalco, Ciudad de México 02128, Mexico
C. A. Vargas
Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotzalco, Ciudad de México 02128, Mexico
The use of polymer microspheres is becoming increasingly widespread. Along with their most common applications, they are beginning to be used in the synthesis of photonic crystals, microstructure analysis and multiplexed diagnostics for disease control purposes. This paper presents a simple mathematical model that allows us to study the transport mechanisms involved in the deformation of an elastic microchannel under the flow stream of a power-law fluid. In particular, we analyze the momentum transfer to a non-Newtonian fluid (Polydimethylsiloxane, PDMS) due to the deformation of the elastic ceiling of a rectangular microchannel. Hooke’s law is used to represent the stress–deformation relationship of the PDMS channel ceiling. Stop-flow lithography is modeled, and the pressure exerted by the deformed PDMS ceiling on the fluid when the microchannel returns to its original form is taken into account. It is found that the response time of the elastic ceiling deformation increases with the channel width and length and decreases with the channel height independently of the power-law exponent of the injected fluid. However, an increase in the power-law exponent beyond unity causes an increase in the wall-deformation response time and the maximum deformation of the channel height compared to a Newtonian fluid.