Biosensors (Feb 2023)
Sensing Properties of g-C<sub>3</sub>N<sub>4</sub>/Au Nanocomposite for Organic Vapor Detection
Abstract
Alleviating the increasingly critical environmental pollution problems entails the sensing of volatile organic compounds (VOCs) as a hazardous factor for human health wherein the development of gas sensor platforms offers an efficient strategy to detect such noxious gases. Nanomaterials, particularly carbon-based nanocomposites, are desired sensing compounds for gas detection owing to their unique properties, namely a facile and affordable synthesis process, high surface area, great selectivity, and possibility of working at room temperature. To achieve that objective, g-C3N4 (graphitic carbon nitride) was prepared from urea deploying simple heating. The ensuing porous nanosheets of g-C3N4 were utilized as a substrate for loading Au nanoparticles, which were synthesized by the laser ablation method. g-C3N4 presented a sensing sensitivity toward organic vapors, namely methanol, ethanol, and acetone vapor gases, which were significantly augmented in the presence of Au nanoparticles. Specifically, the as-prepared nanocomposite performed well with regard to the sensing of methanol vapor gas and offers a unique strategy and highly promising sensing compound for electronic and electrochemical applications.
Keywords