Machines (Apr 2022)
Process Optimization of Robotic Polishing for Mold Steel Based on Response Surface Method
Abstract
Aimed to reduce surface roughness (Ra) and improve surface quality of mold steel, the optimizations of process parameters for robotic polishing, such as polishing pressure, feed speed and rotating speed of tool, are accomplish in this research. The optimum range of each parameter is obtained according to a single factor experiment, and the central composite design experiments on the three polishing parameters are conducted to establish a prediction model of surface roughness. Furthermore, a significance test of the prediction model is carried out through variance analysis. The optimum polishing parameters are obtained based on the analysis of response surface, and are then adopted in the polishing experiments of mold steel for validation. The experiment result of model verification indicates that the relative errors of predicted Ra ratio and actual Ra ratio are within the allowable range (maximum is 13.47%). It proves the accuracy of the roughness prediction model. Meanwhile, the experimental results of multipath polishing show that the surface roughness decreased effectively after polishing with the optimum polishing parameters. The prediction model of surface roughness and optimum polishing parameters are helpful to improve surface quality in robotic polishing for mold steel.
Keywords