Buildings (Apr 2023)

A Simplified Inverse Analysis Procedure for the Stress-Crack Opening Relationship of Fiber-Reinforced Concrete

  • Pedro Paulo Martins de Carvalho,
  • Rodrigo de Melo Lameiras

DOI
https://doi.org/10.3390/buildings13051166
Journal volume & issue
Vol. 13, no. 5
p. 1166

Abstract

Read online

The direct tensile test (DTT) is the most recommended test to determine the tensile behavior of fiber-reinforced concrete (FRC). However, this test is challenging to perform. Several studies have investigated inverse analysis to determine this behavior through simplified tests, such as the bending test. This study deals with developing a new approach to perform an inverse analysis for the three-point bending test (3PBT) involving FRC. A new proposed methodology concerns carrying out the inverse analysis procedure by parts. Initially, the parameters that influence the initial part of the stress–crack opening curve are adjusted. Progressively, the other parameters are adjusted considering the increment of the curve section. This procedure provides an implemented algorithm with more efficiency. A new strategy that deals with the establishment of criteria for parameters is proposed. Its results are compared with experimental data from other literature, whose steel fiber-reinforced concrete (SFRC) tested characteristics present different attributes such as fibers, shape, and length. The proposed methodology obtained the stress–crack opening curves in direct tension with reasonable accuracy, indicating that this methodology can be helpful in the characterization of the post-cracking FRC behavior.

Keywords