Heliyon (Jun 2024)

Shenfu injection alleviate gut ischemia/reperfusion injury after severe hemorrhagic shock through improving intestinal microcirculation in rats

  • Tianfeng Hua,
  • Zongqing Lu,
  • Minjie Wang,
  • Yijun Zhang,
  • Yuqian Chu,
  • Yue Liu,
  • Wenyan Xiao,
  • Wuming Zhou,
  • Xuanxuan Cui,
  • Wei Shi,
  • Jin Zhang,
  • Min Yang

Journal volume & issue
Vol. 10, no. 11
p. e31377

Abstract

Read online

Background: Shenfu (SF) injection, a traditional Chinese medication, would improve microcirculation in cardiogenic shock and infectious shock. This study was aimed to explore the therapeutic potential of the SF injection in gut ischemia-reperfusion (I/R) injury after severe hemorrhagic shock (SHS) and resuscitation. Furthermore, we also investigated the optimal adm? inistration timing. Methods: Twenty-four male SD rats were randomly divided into four groups: Sham group (sham, n = 6), Control group (n = 6), SF injection group (SF, n = 6), and Delayed Shenfu injection administration group (SF-delay, n = 6). In SHS and resuscitation model, rats were induced by blood draw to a mean arterial pressure (MAP) of 40 ± 5 mmHg within 1 h and then maintained for 40 min; HR, MAP ‘were recorded, microcirculation index [De Backer score, perfused small vessel density (PSVD), total vessel density (TVD), microcirculation flow index score (MFI), flow heterogeneity index (HI)] were analyzed. The blood gas index was detected, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), diamine oxidase (DAO), malondialdehyde (MDA) were measured by ELISA; ZO-1, and claudin-1 were measured by Western blotting. In addition, hematoxylin-eosin (HE) and periodic acid schiff (PAS) staining pathological sections of the intestinal mucosal tissues were also performed. Results: SF injection increased the MAP, relieved the metabolic acidosis degree associated with the hypoperfusion, and improved the intestinal microcirculatory density and perfusion quality after I/R injury. The expression of DAO, MDA in intestinal tissue, and plasma IL-6, TNF-α significantly decreased in the SF injection group compared to the control group. The concentration of ZO-1 and claudin-1 is also higher in the SF injection group. In addition, the HE and PAS staining results also showed that SF injection could decrease mucosal damage and maintain the structure. In the SF-delay group, the degree of intestinal tissue damage was intermediate between that of the control group and SF injection group. Conclusions: SF injection protect the intestine from I/R injury induced by SHS and resuscitation, the mechanism of which might be through improving intestinal microcirculation, reducing the excessive release of inflammatory factors and increasing intestinal mucosal permeability. Furthermore, the protection effect is more pronounced if administration during the initial resuscitation phase.

Keywords